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1. INTRODUCTION

Global hayperbolicity is well known to play an important in Lorentziangeo-

metry and GeneralRelativity. Seifert [16] proved that it was asufficient condi-

tion for the existence of maximal length geodesicsegmentsjoining causally
related points. This gave a partial generalizationof the important Hopf-Rinow

Theorem (cf. O’Neill [15]) to Lorentzian manifolds. Georch [9] proved that

a spacehasa global Cauchy surfaceS iff it is aglobally hyperbolicspacetime.

Furthermore, Geroch showed that these spacetimesare topological products

of the form IR x S and that global hyperbolicity is a stableproperty. An impor-

tant application of global hyperbolicity is given in the singularity theorems.

Hawking and Penrose [111 showed that many spacetimeshave large globally

hyperbolic subsets,and they used thesesubsetsto constructcausalgeodesics

without conjugate points. The timelike convergencecondition and the generic

condition were then used to deducethe incompletenessof thesegeodesics.The

existenceof an incompletecausalgeodesicis usually takenasindicatingaphysical

singularity.
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In this paperwe considera generalizationof global hyperbolicity calledpseudo-

convexity. The primary motivationsfor this paperareto explainhow pseudocon-

vexity canoften he usedin placeof global hyperholicity andto explain someof

theimplications for geodesicstructurethis assumptionentails.

A spacetime(M, g) is said to be causallypseudoconvexiff given any compact

set K in M there is alwaysa largercompactset K’ such that all causalgeodesic

segmentsjoining points of K lie entirely in K’. This basicconceptcan be used

for any classof geodesics.For example,null pseudoconvexityis the requirement
thatall null geodesicsegmentswith endpointsin K lie entirely in K’.

Like global hyperbolicity. (causal)pseuaoconvexityis a type of completeness

requirement. Intuitively, one may think of pseudoconvexspacesas failing to

have any cinterior> points missing. Thus, Minkowski space less any compact

set is neither globally hyperbolic nor causallypseudoconvex.A simple example

of a causally pseudoconvexspacetimewhich is not globally hyperbolic is the

open strip a <x <b in the Minkowski (t, x) plane. We say that causalpseudo-

convexity generalizesglobal hyperbolicity since everyglobally hyperbolicspace-

time is causallypseudoconvex.

in the theory of pseudodifferentialequations,theconceptof pseudoconvexity

is applied to the bicharacteristicsegmentsin the study of global solvability. If

(M, g) is a Lorentzianmanifold with d’Alembertian E, then the symbol of D

is the metric tensor in thecontravariantform (cf. Trèves[17]). In this casethe

bicharacteristicse~entsarethe null geodesicsegments,and theinhomogeneous

waveequation

Eu =f

hasglobal solutions in the distribution senseif (I) (M, g) is null pseudoconvex

and (2) each end of eachinextendiblenull geodesicfails to be imprisioned. We

call this second requirement disprisonment of null geodesics.in the language

of PDE’s,it is the requirementthat theoperatorbe of real principal type.

Interestingly, both null pseudoconvexityand disprisonmentof null geodesics

fail to be separately C1-stable in the Whitney topology, but the requirement

that they hold jointly is C1-stable(cf. [5. p. 181).

As one would expect, disprisonmentand pseudoconvexityhave important

implications for the geodesic structure of a spacetime. Williams [181 found

cxanqlesot geodesicallycompletespacetimeswith arbitrarily close incomplete

metrics in the Whitney (‘~-topo1ogy. Hence geodesic completenessfails to be

(~rst.!hlefor all r ~ 1. On the other hand,BeemandEhrlich [2] haveestablished

the C1-fine stability of causal geodesiccompletenessfor Lorentzianmanifolds

which arc both causally pseudoconvexand causally disprisoning.As a corollary.

if (M, g) is a causally geodesicahlycompleteand globally hyperbolic spacetime.



PSEUDOCONVExITy AND GENERAL RELATIVITY 73

then there is a C1-fine neighborhoodU(g
0) of g0 in thespaceof all Lorentzian

metricsonM suchthateachg E U(g0) is causallygeodesicallycomplete.
Let {“y~} be a sequenceof inextendiblegeodesicsandassumethat ‘y,(O) -+‘y’(O)

where ‘y is also an inextendiblegeodesic.Let lim inf and him sup representthe

lower and upper Hausdorff limits, cf. Section II and [I, p. 34]. In general,one

has that the image of ~ lies in the him inf of the images of the ; and this in

turn lies in theurn supof the imagesof the

yc lim infy~c him sup;.

For arbitrary spacetimes,thesethreesets may be distinct, On the other hand,

we show that if (M, g) is pseudoconvexand disprisoning, then thesesets are

all equal.

2. PRELIMINARIES

Let (M,g) be an n-dimensional spacetimeof signature (+, j—, —, . . . , —).

For each tangent vectorv, there is a unique inextendiblegeodesicy : (a, b) -+

—~(M, g) with ‘y’(O) = v. If this geodesicis denotedby ‘ye, then theexponential

map

exp~:T~M~÷M

is defined by exp~(v)= y~(l) providedy~(I)exists. If every geodesicstarting

at p is complete,then the domain of exP~is all of ?,M. Otherwise,exP~is only

definedon a propersubsetof

Conjugatepoints are defined using the derivative of the exponentialmap.

If v E T~M,then exP~~7~,(TI,M)~ T~Mwhere q = exp~O4.If exp~~has rank
<n at u, then the point q is said be conjugateto p alongthe geodesicy~(t)=

= exp~(tv).
Let Lor(M) denote the spaceof all Lorentzianmetrics on M (cf. [1], [5],

[131). We define the Whitney C
T topologieson Lor(M) using a fixed countable

covering B. of M by compact sets which lie in coordinateneighborhoodsand

form a locally finite cover. Assume~ -÷ (0, + oo) is a continuousfunction.
Let g

1, g2 E Lor(M); then g1 — g2I~<ö if, for eachp EM, all of thecorrespond-

ing coefficients and their mixed derivatives up to order r of the two metric

tensorsg1 and g2 are ö(p)-close at p when calculated in the coordinatesof all

B7 which contain p. The sets TJ(g1, ~) = {g E Lor(M) g1 — g ,. < ô } for arbi-

trary g1 E Lor(M) and continuous ö :M -÷ (0, + 00) form a basis for the C~-

-fine topology on Lor(M). This topology is independentof the choiceof {B1}.

In order to define the Hausdorff upperand lower limits, let be anarbitrary
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sequenceof subsetsofM. Then

lim sup {A~}={p EM everyneighborhoodofp intersects

infinitely manyA
0}

and

lim inf{A~} ={p EM everyneighborhoodof p intersectsall but

a finite numberof theA~}.

The Hausdorffupper and lower limits always exist and arealwaysclosedsubsets

of M; however, one or both of them may be empty. Clearly, lim inf{A~} c
C lim sup{A~}.

We now define causal (geodesic)pseudoconvexity.Similar definitions hold

for null (geodesic)pseudoconvexity,etc.

DEFINITION 2.1. The spacetiine (M, g) is causally pseudoconvexiff for each
compactset K in M there is a compactset K’ such that each casualgeodesic
segmenty:[a, b]-+M with -y(a), y(b)EKsatisfiesy[a, b]ç K’.

We now define causalgeodesic disprisonment. Similar definitions hold for

null geodesicdisprisonmentetc.

DEFINITION 2.2. The spacetilne (M,g) has no imprisonedcausalgeodesicsor

is causally disprisoning iff for each inextendiblecausal geodesic-y : (a. b) -+ M

and t0E(a,b), both of the sets {y(t)(a<t~t0} and y(t)tt0~t<b} fail to
havecompactclosure.

The definition is the requirementthat neitherendof ‘~‘ be (totally) imprisoned

in a compact set. When (M, g) satisfies both the causal pseudoconvexityand

causal disprisoningconditions, then it is easyto show that if K is compactand

y : (a, b)-+M is an inextendiblecausalgeodesic,then there are parametervalues

and t2 in (a, b) with a < t1 < t2 < h suchthat y(t) is not in K for all a < t <

and t2 < t <b. If (M, g) is strongly causal, then (M, g) is causally disprisoning

but not necessarilypseudoconvex.Minkowski spacetimewith a point removed

is causallydisprisoningbut not causallypseudoconvex.

Most of our notational conventionsare standardand may be found in [1],

[101, and [151.
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3. CEODESICSAND LIMITS

In this section we consider the limit sets of sequencesof geodesics.Let

be a sequenceof inextendible geodesicsand assume‘y,(O) -+ ‘y’(O) where -y is

also an inextendible geodesic.For each t0 in the domain of ‘y, we have in

the domain of ; for sufficiently largen and y0(t0)-+ -y(t0). Thus, letting ‘y and

denote the image sets as well as the mappings,we have ‘~‘c lim inf -y~}. In
general,this containmentis proper.For example,letM = {(x, t) — 42 <x <42

he two dimensionaluniversalanti-dc Sitter spacetirnewith metric ds
2 = sec2(x)

(dt2 — dx 2) and time orientationdeterminedby ~ cf. [1, p. 141]. If =

is a null vector at somep EM and are timelike geodesicswith ~(0) .- v~.

then the image of ‘~‘ will he a null geodesicand thus a segmentat 450 lying in

the strip — 42 <x <42. On the otherhand,it is easyto checkthat the images

of the 7~7approachan entire sequenceof null geodesics.The lim inf of {;} is

equal to a sequenceof straight line serngentslying in the strip — ir/2 <x < 42.

Theseline segmentsalternatein Euclideanslopebetween+ I and— 1 and have

endpoints on the <<edges>>x = + ir/2 and x = — ir/2. Thus -y ~ lim inf{’y~}. Since

this exampleis conformal to the open strip — 42 <x <42 in the Minkowski
plane, this type of behavioroccursin causally simple (hencealso causally conti-

nuousandstrongly causal)spacetimes.In thegivenexampleonehaslim inf{-y~} =

= lim sup1’~~},but it is easy to construct exampleswith proper inclusions C

C lim inf{-y~~C lim sup•~-y~}.
On the other hand, one can establish equality for sequences{;} of causal

geodesicsin spaceswhich are both causally pseudoconvexandcausallydisprison-

ing.

PROPOSITION3.1. Let (M, g) be a spacetime~i’hichis bothcausallypseudoconvex
and causally disprisoning. If {~}are inextendiblecausalgeodesicswith -y,(O) —~

—* ‘y’(O) where‘y is alsoan inextendible(causal)geodesic,then y = urn inf{7
0 =

= 11,11 sup~

Proof It is sufficient to show that urn sup {;~. c y. To this end,assumethat
q E lim sup ~ Then thereis somesubsequence‘{‘~m} of {‘y~} anda corresponding

sequence{q~i with E “tm for each rn and q07 -÷q.Assume without loss of

generality that q07 = ‘yrn(tm) for tm > 0. Choose any compactset K containing

all of ‘y(O), ~‘m~
0~’ q and ~ By causalpseudoconvexity.there is a compact

set K’ containingall of the causalgeodesicsegments~tm [0, t~I~The limit geo-

desic ‘~‘ must be causal because‘y,
7~(0) —~‘-y’(O). Using causaldisprisonment,one

obtains a value T> 0 such that -y(T) EM — K’. Then ‘y~(T)-÷ ‘y(T) and ~ [0,

tml C K’ yield 0< t,~< T for all sufficiently large in. Using the compactnessof
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the interval [0, T], oneobtainsa subsequence{‘~k}of {m } with the corresponding

subsequencetk —* r E (a. T). Then = ‘Yk(tk) —* y(r) shows that q = -y(T), and

thds that lim sup{;}C -y asdesired.

We now show that global hyperbolicity implies causalpseudoconvexity.Recall

that a strongly causalspacetimeis globally hyperbolic iffJ~(p)flJ(q) is com-

pactfor all p. q EM, cf. [101.

LEMMA 3.2. If (M,g) is a globally hyperbolicspactime,then (M, g) is bothcausal-
ly pseudoconvex andcausallydisprisoning.

Proof Causaldisprisoningfollows fromthe fact thatin astrongly causalspacetime,

any inextendible causal curve must eventually leaveandneverreturn to a com-

pact set. To show causalpseudoconvexity,let K be a given compactset. We

may construct a finite number of setsof the form J~(p~)nJ(q~),say for I <
< k, suchthatK lies in theunion of the interiorsof thesesets.Set

k k

K’= U U [J~(p~)nJ(q1)].
/=1 i=1

Let c : [a, b] -+M be any future directedcausalcurvewith c(a), c(b) E K. Choose

fixed i and / such that c(a) EJ~(p~)and c(b) EJ(q1). Then q1 EJ~(p.) and

the entire curve c[a, b] must lie in J~(p~)flJ(q1), hencealso in K’. Sincethis

holds for arbitrary future directedcausalcurves, it holds for all causalgeodesic

segmentswith endpointsin K’. .

COROLLARY 3.3. Let ~M, g) be a gb ball)’ hyperbolic spacetirne. If ; } are

inextendible causal geodesicswith y~(0)—~‘y’(O) where ‘y is an inextendible

geodesic,then ‘y = urn inf{;} = Urn sup{;}.

It is important to realizein Propositioii 3.1 and Corollary 3.3 that thesequence

must be causal.Consider, for example,two dimensionaluniversal anti-de

Sitter spacewith spaceandtime interchanged.ThusM = {(t,x)~—42 <x <421

with ds
2 = sec2(x)(—dt2 + dx2) and time orientationdeterminedby the tiniehike

vector field ~—. Thisspacetirneisglobally hyperbolic.The sequenceof geodesics

{;} consideredat the beginning of this section in anti-de Sitter spaceare now

spacelikeand show that the conclusion of Theorem 3.3 may fail for spacelike

sequencesin globally hyperbolic spacetimes.

One can, however,extendProposition3.1 to spacelikegeodesicsby requiring

that the pseudoconvexityand disprisoning assumptionshold for spacelike as
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well as causalgeodesics.We say (M,g) is geodesicallypseudoconvexiff for each

compactK, all geodesicsegmentswith endpoints in K lie in somecompactK’

asbefore.It is important to note that K’ dependsonly on K.

THEOREM3.4. Let (M,g) be a spacetimewhich is geodesicallypseudoconvex
and which has no imprisoned geodesicsof any type. If {; } is a sequenceof

inextendiblegeodesicswith y,(O) —~ -y’(O) where ‘y is an inextendiblegeodesic,

theny = lirn inf { y,, } = lim sup { ~ }. U

4. PSEUDOCONVEXITY

In this section we discuss some of our results involving pseudoconvexity
which are of interest in Lorentziangeometryand GeneralRelativity. We begin

by statingastability result(cf. Proposition4.5 of [5]).

PROPOSITION4.1. Let (M,g) bea spacetimewhich is bothcausallypseudoconvex
and causallydisprisoning. Then there is a C1-fine neighborhoodU(g) ofg in the

space ofLorentzianmetrics Lor (M) such that each g’ E U(g) is both causally
pseudoconvexand causallydisprisoning. •

This result is the pseudoconvexanalogueof a result of Geroch [9, p. 448]
whichguaranteesthe C°-stabilityof globalhyperbolicity. Sinceglobal hyperboli-

city yields theexistenceof solutionsto theCauchyproblemin GeneralRelativity,

the Gerochresult impliesa stability of solvability. Studiesof theCauchyproblem

in GeneralRelativity may be found in Chapter7 of [10] andin [14J. The concept

of pseudoconvexityfirst arosein modern studiesof global solvability of (partial)

differential equations,anda brief digressionmay be usefulhere.

The waveequationon a spacetimeis a primary exampleof ahyperbolicequa-

tion. Recall that two problemswith the hyperbolic equationPu = f are: (I)

it may be solvable (evenwith distributions allowed for u) only for somef; (2)

unlike elliptic equations,u need not be as smooth as f (e.g., fEC~neednot

iil)ply U E C~).This forces the use of distributions and thus the need for

regularity (smoothness)theorems for solutions. Thus one analyzessolvability
in three steps:(I) establish the existenceof a parametrix (i.e., an E such that

PE is the identity mod C~);(2) obtain an exact solution; and (3) study the

regularity of the solution. Given the existenceof a parametrix, classical local

constructionsdue to Hadamardhandle(2) and (3) for the wave equation(see

e.g.L81), andanalogoustechniquesexist for generalhyperbolicequations.

We note in passingthat Cr regularity is much more difficult to study,usually

requiring a great deal of abstract P.D.E. theory including Sobolev spacesand
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Fourier integral operators.It is also interesting to note that classical <<hard>>

analysisappearsmostly in (2) and (3), while the most difficult step(1) is predo-

minantly <<soft>> analysis.

Accordingly, one studies global solvability by investigating (1): the global

existenceof a parametrix.Therehavebeentwo main results.Leray [12] showed

that global hyperbolicity sufficed, and Duistermaatand HOnnander[7] showed
that null pseudoconvexityand null disprisonment (jointly) sufficed. These last

two conditions represent a genuine improvement since global hyperbolicity

implies them but the converseis not true. (Examples exist [7]. however, to

show that these conditions are not even individually necessary;more work is

still neededthere). Geroch [9] provided the topologicalmeaningof globalhyper-

bolicity, andsomegeometricalmeaninghasbeenobtainedvia conformalinvarian-
ce [1, p. 107]. The goal in our seriesof papers[3], [4], [5], [6] is to elucidate

the geometrical meaning of pseudoconvexityand disprisonment for various

typesof geodesicsystemsandgeometries.

Returning to the main discussion,we now give the correspondingstability

result for solvability in the pseudoconvexcase.Heresolvability is in thedistribu-

tion sense(cf. Corollary3.4 of [5]).

COROLLARY 4.2. Let (M, g) be a spacetimewhich is both causallypseudocons’cx
and causally disprisoning. Then there is a C1-fine neighborhoodU(g) of g in

Lor(M) such that for eachg’ E U(g) theequation D’u Ef+ C’(M) hasglobal

(distribution) solutions u. Here D’ is the d’Ale,nbertian for g’ and f is aii~’

distribution such that Eu Ef+ C~(M) is solvable. U

It might be of some interest to have a careful analysisof the corresponding

stability of exact solvability and regularity (of Hadamard’s methods, for

example),althoughtheir local naturetendsto leadoneto believethat no additio-

nal difficulties would be encountered.

Seifert [16] hasshown that for globally hyperbolicspacetimes,any two causal-

ly related points may be joined by a causalgeodesic.His argumentis to let q C

EJ~(p)and consider the spaceC(p, q) of future directedtimelike curvesfrom

p to q. This spaceC(p,q) is compactusing theC° topology on curvesand the
length functional L : C(p, q) -+ IR is upper semicontinuousfor this topology.

It follows that L attains a maximum on some y
0 E C(p, q) and this -y~is the

desiredmaximal length timeike geodesicfrom p to q.

Seifert’s theorem is the strongestpossiblewithin the classof globally hyperbo-

lic spacetirnes.In general,thereis no geodesicjoining a pair of points in aglobally

hyperbolic spacetimeunless these points are causally related. For example,

returning to universalanti-de Sitter spacewith spaceand time interchanged,we
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obtain a globally hyperbolic spacetiniewith many spacelikerelated point pairs

not joined by anygeodesic.

A pseusoconvexextension of Seifert’s Theoremhasrecently beenobtained

[6]. This result, a pseudoriemannianversionof the Hopf-Rinow Theorem,yields

the existenceof at leastonegeodesicjoining anygivenpairof points for a certain

class of spacetimeswhich are pseudoconvexand disprisoningfor all types of

geodesics.

THEOREM 4.3. Let (M, g) be a space-timewhich is geodesicallypseudoconvex

and which has no imprisonedgeodesicsofany type. If (M, g) hasno conjugate
points, then given any pair of points there is at least one geodesicjoining
them.

As a last application of pseudoconvexity,we statesomerecently obtained

results [2] on thestability of geodesiccompleteness.Theseresultsweremotivated
by the example of Williams [18] showinggeodesiccompletenessis not stable

for spacetimesin general.Previously,it had beenthroughtthat geodesiccomple-
tenesswasstable[13], [1, p. 175].

THEOREM 4.4. Let (M, g) be a spacetimewhich is causally pseudoconvexand
causally disprisoning. If (M, g) is causally geodesicallycomplete,then there is
a C’-fine neigborhoodU(g) of g in Lor (M) such that eachg’ E U(g) is also
causallygeodesicallycomplete. U

COROLLARY 4.5. If (M, g) is a globally hyperbolicspacetimewhich is causally
complete,then there is a C’-fine neighborhoodU(g) ofg such thatall g’ E U(g)
are causallygeodesicallycomplete.

For Minkowski spacetiniethe abovecorollary can be strengthenedto include

spacelikecompleteness.

THEOREM4.6. Let (IR”, 17) be Minkowski spacetirne. There exists a C1-fine
neighborhoodU(i~)of i~in Lor (IR”) such that all geodesicsof eachg’ E U(g)

are complete. U
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