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1. INTRODUCTION

Global hayperbolicity is well known to play an important in Lorentzian geo-
metry and General Relativity. Seifert [16] proved that it was a sufficient condi-
tion for the existence of maximal length geodesic segments joining causally
related points. This gave a partial generalization of the important Hopf-Rinow
Theorem (cf. O’Neill [15]) to Lorentzian manifolds. Georch [9] proved that
a space has a global Cauchy surface § iff it is a globally hyperbolic spacetime.
Furthermore, Geroch showed that these spacetimes are topological products
of the form IR x S and that global hyperbolicity is a stable property. An impor-
tant application of global hyperbolicity is given in the singularity theorems.
Hawking and Penrose [11] showed that many spacetimes have large globally
hyperbolic subsets, and they used these subsets to construct causal geodesics
without conjugate points. The timelike convergence condition and the generic
condition were then used to deduce the incompleteness of these geodesics. The
existence of an incomplete causal geodesic is usually taken as indicating a physical
singularity.
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In this paper we consider a generalization of global hyperbolicity called pseudo-
convexity. The primary motivations for this paper are to explain how pseudocon-
vexity can often be used in place of global hyperbolicity and to explain some of
the implications for geodesic structure this assumption entails.

A spacetime (M. g) is said to be causally pseudoconvex iff given any compact
set K in M there is always a larger compact set K’ such that all causal geodesic
segments joining points of K lie entirely in K'. This basic concept can be used
for any class of geodesics. For example, null pseudoconvexity is the requirement
that all null geodesic segments with endpoints in K lie entirely in K.

Like global hyperbolicity. (causal) pseudoconvexity is a type of completeness
requirement. Intuitively, one may think of pseudoconvex spaces as failing to
have any «interior» points missing. Thus, Minkowski space less any compact
set is neither globally hyperbolic nor causally pseudoconvex. A simple example
of a causally pseudoconvex spacetime which is not globally hyperbolic is the
open strip a <x < b in the Minkowski (7, x) plane. We say that causal pseudo-
convexity generalizes global hyperbolicity since every globally hyperbolic space-
time is causally pseudoconvex.

In the theory of pseudodifferential equations, the concept of pseudoconvexity
is applied to the bicharacteristic segments in the study of global solvability. If
(M, g) is a Lorentzian manifold with d’Alembertian O, then the symbol of O
is the metric tensor in the contravariant form (cf. Tréves [17]). In this case the
bicharacteristic segments are the null geodesic segments, and the inhomogeneous
wave equation

Qu=f

has global solutions in the distribution sense if (1) (M, g) is null pseudoconvex
and (2) each end of each inextendible null geodesic fails to be imprisioned. We
call this second requirement disprisonment of null geodesics. In the language
of PDE’s, it is the requirement that the operator be of real principal type.

Interestingly, both null pseudoconvexity and disprisonment of null geodesics
fail to be separately Cl-stable in the Whitney topology. but the requirement
that they hold jointly is C'1-stable (cf. [5, p. 18]).

As one would expect. disprisonment and pseudoconvexity have important
implications for the geodesic structure of a spacetime. Williams [18] found
examples of geodesically complete spacetimes with arbitrarily close incomplete
metrics in the Whitney (’-topology. Hence geodesic completeness fails to be
(7-stable for all ¥ = 1. On the other hand, Beem and Ehrlich [2] have established
the Cl-fine stability of causal geodesic completeness for Lorentzian manitolds
which are both causally pseudoconvex and causally disprisoning. As a corollary.
if (M.g) is a causally geodesically complete and globally hyperbolic spacetime,
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then there is a Cl-fine neighborhood U(go) of 8 in the space of all Lorentzian
metrics on M such that each g € U(g,) 1s causally geodesically complete.

Let {7n} be a sequence of inextendible geodesics and assume that 7,’1(0) = v'(0)
where v is also an inextendible geodesic. Let lim inf and lim sup represent the
lower and upper Hausdorff limits, cf. Section II and [1, p. 34]. In general, one
has that the image of vy lies in the lim inf of the images of the 7, and this in
turn lies in the lim sup of the images of the Y

v C lim inf y, C lim sup Y,

For arbitrary spacetimes, these three sets may be distinct. On the other hand,
we show that if (M,g) is pseudoconvex and disprisoning, then these sets are
all equal.

2. PRELIMINARIES

Let (M,g) be an n-dimensional spacetime of signature (+,—,—, ...,—).
For each tangent vector v, there is a unique inextendible geodesic « : (a, )~
-» (M, g) with ¥'(0) = v. If this geodesic is denoted by 7,, then the exponential
map

exp,, : 7;)M—>M

is defined by expp(v) =v,(1) provided 7, (1) exists. If every geodesic starting
at p is complete, then the domain of exp,, is all of J;M. Otherwise, exp, is only
defined on a proper subset of I;JM.

Conjugate points are defined using the derivative of the exponential map.
If ve Y;JM, then €XPpe :ZJ(];M)-» T;M where g = expp(v). If EXPys has rank
<n at v, then the point q is said be conjugate to p along the geodesic v (7) =
= expp(tv).

Let Lor(M) denote the space of all Lorentzian metrics on M (cf. [1], [5],
[13]). We define the Whitney C” topologies on Lor(M) using a fixed countable
covering B, of M by compact sets which lie in coordinate neighborhoods and
form a locally finite cover. Assume 8 :M — (0, + o) is a continuous function.
Let g,, g, € Lor (M); then | g, — g2|r < 6 if, for each p €M, all of the correspond-
ing coefficients and their mixed derivatives up to order r of the two metric
tensors g, and g, are &(p)-close at p when calculated in the coordinates of all
B; which contain p. The sets U(g,, 8) ={g€Lor(M)|-|g,— g|, < 8} for arbi-
trary g, € Lor(M) and continuous 6: M~ (0,+ o) form a basis for the C”-
-fine topology on Lor (M). This topology is independent of the choice of{Bi}.

In order to define the Hausdorff upper and lower limits, let 4, be an arbitrary
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sequence of subsets of M/, Then
lim sup {An} ={p € M| every neighborhood of p intersects
infinitely many A}
and
lim inf{A"} ={peEM | every neighborhood of p intersects all but
a finite number of the An.}.

The Hausdorff upper and lower limits always exist and are always closed subsets
of M; however, one or both of them may be empty. Clearly, lim inf{An} C
Climsup{4,}.

We now define causal (geodesic) pseudoconvexity. Similar definitions hold
for null (geodesic) pseudoconvexity, etc.

DEFINITION 2.1. The spacetime (M,g) is causally pseudoconvex iff for each
compact set K in M there is a compact set K' such that each casual geodesic
segment vy : [a, b] = M with v(a), v(b) € K satisfies v [a, b] C K'.

We now define causal geodesic disprisonment. Similar definitions hold for
null geodesic disprisonment etc.

DEFINITION 2.2. The spacetime (M,g) has no imprisoned causal geodesics or
is causally disprisoning iff for each inextendible causal geodesic vy :(a, by —>M
and 1€ (a, b), both of the sets {y(t) fa<t<typand {v()|r,<t< b} fail 1o
have compact closure.

The definition is the requirement that neither end of -y be (totally) imprisoned
in a compact set. When (M, g) satisfies both the causal pseudoconvexity and
causal disprisoning conditions, then it is easy to show that if K is compact and
v :(a, by > M is an inextendible causal geodesic, then there are parameter values
1 and r, in (a, b) with a < L<n< b such that y(r) is notin K for all a <t < 1
and 1, <t <b. If (M, g) is strongly causal, then (M, g) is causally disprisoning
but not necessarily pseudoconvex. Minkowski spacetime with a poitnt removed
is causally disprisoning but not causally pseudoconvex.

Most of our notational conventions are standard and may be found in [1],
[10], and [15].
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3. GEODESICS AND LIMITS

In this section we consider the limit sets of sequences of geodesics. Let Yn
be a sequence of inextendible geodesics and assume 7,:(0)—>'y'(0) where 7y is
also an inextendible geodesic. For each 1, in the domain of 7y, we have Iy in
the domain of Y, for sufficiently large # and —y"(to) - 'y(to)_ Thus, letting v and
7, denote the image sets as well as the mappings, we have vy C lim inf{'yn}. In
general, this containment is proper. Forexample letM = {(x, 1) |—7/2 <x <@/2}
be two dimensional universal anti-de Sitter spacetime with metric ds? = sec2(x) -
- (di? — dx?) and time orientation determined by :—t cof. [1,p. 141) If v, = ¥'(0)
is a null vector at some p €M and v, are timelike geodesics with 7,'1(0)—>vp_.
then the image of v will be a null geodesic and thus a segment at 45° lying in
the strip — /2 <x < #/2. On the other hand, it is easy to check that the images
of the ~y, approach an entire sequence of null geodesics. The lim inf of{'y"} is
equal to a sequence of straight line semgents lying in the strip — 7/2 <x < 7/2.
These line segments alternate in Euclidean slope between + 1 and — 1 and have
endpoints on the «edges» x = + 7/2 and x = — n/2. Thus -y % lim inf {7 }. Since
this example is conformal to the open strip — #/2 <x < /2 in the Minkowski
plane, this type of behavior occurs in causally simple (hence also causally conti-
nuous and strongly causal) spacetimes. In the given example one has lim inf{'yn} =
= lim sup {v,}, but it is easy to construct examples with proper inclusions v C
C lim inf {7,} C lim sup |, }.

On the other hand, one can establish equality for sequences {v,} of causal
geodesics in spaces which are both causally pseudoconvex and causally disprison-
ing.

PROPOSITION 3.1. Let (M, g) be a spacetime which is both causally pseudoconvex
and causally disprisoning. If {'yn} are inextendible causal geodesics with 'yn'(O)—>
= v'(0) where vy is also an inextendible (causal) geodesic, then v = lim inf {r, | =
= lim sup {v,}.

Proof. 1t is sufficient to show that lim sup {y, 1 C 7. To this end, assume that
g € lim sup {v,}. Then there is some subsequence {v, } of {’yn} and a corresponding
sequence {q, } with q, €7, for each m and q, — q. Assume without loss of
generality that 9 = 7m(rm) for > 0. Choose any compact set K containing
all of v(0), v,,(0), ¢ and q,,. By causal pseudoconvexity, there is a compact
set K' containing all of the causal geodesic segments Yo ] [0, tm]. The limit geo-
desic y must be causal because 7,;(0)»7’(0). Using causal disprisonment, one
obtains a value 7> 0 such that ¥(7) €M — K'. Then v, (7) > y(T) and v, | [0,
t,]C K’ yield 0<t, <T for all sufficiently large . Using the compactness of
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the interval [0, 7], one obtains a subsequence {v,}of {,, | with the corresponding
subsequence t,>7€(@.T). Then g, = 'yk(tk) — (1) shows that g = y(7), and
thus that lim sup {7, € v as desired. m

We now show that global hyperbolicity implies causal pseudoconvexity. Recall
that a strongly causal spacetime is globally hyperbolic iff J*(p) NJ ™ (g) is com-
pact forallp, g €M, cf. [10].

LEMMA 3.2. If (M, g) is a globally hyperbolic spactime, then (M, g) is both causal-
Iy pseudoconvex and causally disprisoning.

Proof. Causal disprisoning follows from the fact thatin a strongly causal spacetime,
any inextendible causal curve must eventually leave and never return to a com-
pact set. To show causal pseudoconvexity, let K be a given compact set. We
may construct a finite number of sets of the form J+(pi) NJ7(q;), say for 1 <
<{i < k, such that K lies in the union of the interiors of these sets. Set

k k
K'=U UV @)nI @)

j=1i=1

Let ¢ : [a, b] > M be any future directed causal curve with ¢ (a), c(b) € K. Choose
fixed i and j such that c(a) €J7 (p;) and c(b) €J7(g,)- Then ¢, €J* (p;) and
the entire curve c[a, b] must lie in J* ;) ﬂJ"(q}.), hence also in K'. Since this
holds for arbitrary future directed causal curves, it holds for all causal geodesic

segments with endpoints in K'. .

COROLLARY 3.3. Ler (M,g) be a globally hyperbolic spacetime. If |v,} are
inextendible causal geodesics with 7;(0)—>'y'(0) where vy is an inextendible
geodesic, then vy = lim inf {,} = lim sup {,}. .

[t is important to realize in Proposition 3.1 and Corollary 3.3 that the sequence
Y, must be causal. Consider, for example, two dimensional universal anti-de
Sitter space with space and time interchanged. Thus M = {(£,x) |~ 7/2 <x </}
with ds? = sec? (x (— dt? + dx?) and time orientation determined by the timelike
vector field % This spacetime is globally hyperbolic. The sequence of geodesics
{7"} considered at the beginning of this section in anti-de Sitter space are now
spacelike and show that the conclusion of Theorem 3.3 may fail for spacelike
sequences in globally hyperbolic spacetimes.

One can, however, extend Proposition 3.1 to spacelike geodesics by requiring
that the pseudoconvexity and disprisoning assumptions hold for spacelike as
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well as causal geodesics. We say (M, g) is geodesically pseudoconvex iff for each
compact K, all geodesic segments with endpoints in K lie in some compact K'
as before. 1t is important to note that K’ depends only on K.

THEOREM 3.4. Let (M,g) be a spacetime which is geodesically pseudoconvex
and which has no imprisoned geodesics of any type. If {v,} is a sequence of
inextendible geodesics with 'yn'(O)—+'y'(O) where v is an inextendible geodesic,
then vy = lim inf {7, } = lim sup {7, }. n

4. PSEUDOCONVEXITY

In this section we discuss some of our results involving pseudoconvexity
which are of interest in Lorentzian geometry and General Relativity. We begin
by stating a stability result (cf. Proposition 4.5 of [5]).

PROPOSITION 4.1. Let (M, g) be a spacetime which is both causally pseudoconvex
and causally disprisoning. Then there is a Cl-fine neighborhood U(g) of g in the
space of Lorentzian metrics Lor (M) such that each g' € U(g) is both causally
pseudoconvex and causally disprisoning. ]

This result is the pseudoconvex analogue of a result of Geroch [9, p. 448]
which guarantees the C9-stability of global hyperbolicity. Since global hyperboli-
city yields the existence of solutions to the Cauchy problem in General Relativity,
the Geroch result implies a stability of solvability. Studies of the Cauchy problem
in General Relativity may be found in Chapter 7 of [10] and in [14]. The concept
of pseudoconvexity first arose in modern studies of global solvability of (partial)
differential equations, and a brief digression may be useful here.

The wave equation on a spacetime is a primary example of a hyperbolic equa-
tion. Recall that two problems with the hyperbolic equation Pu = f are: (1)
it may be solvable (even with distributions allowed for ) only for some f; (2)
unlike elliptic equations, u need not be as smooth as f (e.g.,, f€C”~ need not
imply « &€ C™). This forces the use of distributions and thus the need for
regularity (smoothness) theorems for solutions. Thus one analyzes solvability
in three steps: (1) establish the existence of a parametrix (i.e., an E such that
PE is the identity mod C~); (2) obtain an exact solution; and (3) study the
regularity of the solution. Given the existence of a parametrix, classical local
constructions due to Hadamard handle (2) and (3) for the wave equation (see
e.g. [8]), and analogous techniques exist for general hyperbolic equations.

We note in passing that C” regularity is much more difficult to study, usually
requiring a great deal of abstract P.D.E. theory including Sobolev spaces and
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Fourier integral operators. It is also interesting to note that classical «hard»
analysis appears mostly in (2) and (3), while the most difficult step (1) is predo-
minantly «soft» analysis.

Accordingly, one studies global solvability by investigating (1): the global
existence of a parametrix. There have been two main results. Leray [12] showed
that global hyperbolicity sufficed, and Duistermaat and Hormander [7] showed
that null pseudoconvexity and null disprisonment (jointly) sufficed. These last
two conditions represent a genuine improvement since global hyperbolicity
implies them but the converse is not true. (Examples exist [7], however, to
show that these conditions are not even individually necessary; more work is
still needed there). Geroch [9] provided the topological meaning of global hyper-
bolicity, and some geometrical meaning has been obtained via conformal invarian-
ce {1, p. 107]. The goal in our series of papers [3], [4], [S], [6] is to elucidate
the geometrical meaning of pseudoconvexity and disprisonment for various
types of geodesic systems and geometries.

Returning to the main discussion, we now give the corresponding stability
result for solvability in the pseudoconvex case. Here solvability is in the distribu-
tion sense (cf. Corollary 3.4 of [5]).

COROLLARY 4.2. Let (M, g) be a spacetime which is both causally pseudoconvex
and causally disprisoning. Then there is a C L fine neighborhood U(g) of g in
Lor (M) such that for each g' € U(g) the equation O'u € f+ C~ (M) has global
(distribution) solutions u. Here O’ is the d’Alembertian for g' and f is any
distribution such that Qu € f+ C~ (M) is solvable. ]

It might be of some interest to have a careful analysis of the corresponding
stability of exact solvability and regularity (of Hadamard’s methods, for
example), although their local nature tends to lead one to believe that no additio-
nal difficulties would be encountered.

Seifert [16] has shown that for globally hyperbolic spacetimes, any two causal-
ly related points may be joined by a causal geodesic. His argument is to let g €
€J*(p) and consider the space C(p, q) of future directed timelike curves from
p to g. This space C(p, q) is compact using the CO topology on curves and the
length functional L :C(p,q)— IR is upper semicontinuous for this topology.
It follows that L attains a maximum on some y, € C(p,¢) and this vy, is the
desired maximal length timelike geodesic from p to q.

Seifert’s theorem is the strongest possible within the class of globally hyperbo-
lic spacetimes. In general, there is no geodesic joining a pair of points in a globally
hyperbolic spacetime unless these points are causally related. For example,
returning to universal anti-de Sitter space with space and time interchanged, we
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obtain a globally hyperbolic spacetime with many spacelike related point pairs
not joined by any geodesic.

A pseusoconvex extension of Seifert’s Theorem has recently been obtained
[6]. This result, a pseudoriemannian version of the Hopf-Rinow Theorem, yields
the existence of at least one geodesic joining any given pair of points for a certain
class of spacetimes which are pseudoconvex and disprisoning for all types of
geodesics.

THEOREM 4 3. Let (M, g) be a space-time which is geodesically pseudoconvex
and which has no imprisoned geodesics of any type. If (M, g) has no conjugate
points, then given any pair of points there is at least one geodesic joining
them. [ ]

As a last application of pseudoconvexity, we state some recently obtained
results [2] on the stability of geodesic completeness. These results were motivated
by the example of Williams [18] showing geodesic completeness is not stable
for spacetimes in general, Previously, it had been throught that geodesic comple-
teness was stable [13], [1, p. 175].

THEOREM 4.4, Let (M, g) be a spacetime which is causally pseudoconvex and
causally disprisoning. If (M, g) is causally geodesically complete, then there is
a Cl-fine neigborhood U(g) of g in Lor (M) such that each g' € U(g) is also
causally geodesically complete. [ ]

COROLLARY 4.5. If (M, g) is a globally hyperbolic spacetime which is causally
complete, then there is a Cl-fine neighborhood U(g) of g such thatall g' € U(g)
are causally geodesically complete. =

For Minkowski spacetime the above corollary can be strengthened to include
spacelike completeness.

THEOREM 4.6. Let (R" n) be Minkowski spacetime. There exists a Cl-fine
neighborhood U(n) of n in Lor (R™) such that all geodesics of each g’ € U(g)
are complete. [
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